

Live Road Assessment (LiRA)

AFD20 – TRB 2020

PhD, Matteo Pettinari Principal Investigator Special Consultant at DRD <u>map@vd.dk</u>

Asmus Skar Work Package Leader Assistant Professor at DTU <u>asska@byq.dtu.dk</u>

Background

Standard road measures have been developed to assess road conditions and optimize maintenance strategies focusing on (DRD costs 5 million DKK per year – do not include emissions):

- Safety
- Comfort
- Durability
- Environmental Emissions (noise and CO₂)

Limitations

1) Costs

4)

5)

- 2) Weather
- 3) Road Geometry
 - Not always objective
 - Frequency

between 1 to 3 years

Project idea_{1/2}

Are there alternative way to monitor maintain and manage the roads?

Modern cars are equipped with many sensors which also provide additional valuable data (e.g. energy consumption).

Can car sensors data be used to measure road conditions?

Project idea_{2/2}

What do we need?

CAR SENSING platform

STANDARD road measures

Data processing and Software engineering

Management system

- *1) Connected fleet of vehicles*
- 2) Modern vehicles
- *3)* Access to CAN bus data
- *4) Customized Additional hardware*
- 1) Roughness & Rutting
- 2) Cracking and potholes
- 3) Friction
- 4) Noise and RR
- 1) BYG (Physical models)
- 2) Compute (software engineering)
- *3) Compute (machine learning)*
- 1) Implement live road measures
- *2) Maintenance strategies*

Live Road Assessment (LiRA)_{1/2}

MOTIVATION:

→ harness the technological development in the car industry – give value to new available data

OBJECTIVE:

 \rightarrow performing road condition surveys using data collected by a connected fleet of vehicles

Live Road Assessment (LiRA)_{2/2}

CHALLANGES: Hardware customization, software customization, Database: data flow and data processing

Project plan and organization

Hardware customization

The hardware has an embedded Raspberry Pi:

- runs a full Linux operating system,
- alongside with demanding applications.

new possibilities provided by AutoPi.io (https://www.autopi.io/).

O AutoPi Dongle

The flexibility offered by this system enable LiRA team to:

- CUSTOMIZE the connected SENSORS (possible new tasks, considering to add gyro and microphone on a prototype version);
- CUSTOMIZE the DATA PROCESSING (new tasks – tweaking software to the LiRA needs);
- 3. Can rise the frequency of acquisition of ACCELEROMETER UP TO 800 Hz

Software customization

- A total of 373 sensors available.

- Existing library (open source) for the Renault Zoe utilized.

Raw data stream from AutoPi / GM car	٦		4	5		Aut	oPi /	CanZE	library		Differe	nt Frequenci	es
1F8#0204FFEFFE00000D		ID (hex)	startBit	endBit	resolution	offset	decimals	unit	options (he)	s see MainActivity for definit	- 5 H		
5DE#000000001000040		0c6	0	15	1	32768	1	•	ff	Steering Position	- 0.5	i Hz	
17A#FEEEE6400E03143		0c6	16	31	1	32768	1	°/s	ff	Steering Acceleration	- 0.0)5 Hz	
		0c6	32	47	1	32768	1	0	ff	SteeringWheelAngle_Offse	- Ac	cel up to 800	Hz /
42E#4E3FD0DC6405C039	\backslash	12e	0	7	1	198	0		ff	LongitudinalAccelerationPro	DC JC		
17E#FFFFFF00FF4000FF		12e	8	23	1	32768	0		ff	TransversalAcceleration			
		12e	24	35	0.1	2047	1	deg/s	ff	Yaw rate			
130#00486FFE009FFEAD		130	20	31	1	4094	0	Nm	ff	ElecBrakeWheelsTorqueRe	quest		
186#00003203200020		130	44	55	-3	4094	0	Nm	ff	DriverBrakeWheelTq Req			
12E#C77FFC7FD0FFFF00	1	17a	48	63	0.5	12800	1	Nm	ff	Estimated Wheel Torque			
		186	0	15	0.125	0	2	rpm	ff	Engine RPM			
242#0200FFEFFE000C		186	16	27	0.5	800	1	Nm	ff	MeanEffectiveTorque			

GM car data

GM cloud database

LiRA data warehouse

Currently 56 relevant

sensors are used

Database: Data flow and processing

How do we manage and structure a different road data flow?

TODAY – DRD measures a road (e.g., once per year) and then data goes into the database

FUTURE or LIRA situation

Everyday new data come into the database

It could be 1 – 10 or 100 cars per day

HOW DO WE ASSEMBLE DATA?

Pavement management system

DRD – measurement plan

			Road condition database
Section Type	Number or Direction	Length	(DRD)
Trial 1 – DTU*	1 loop	4 km	Identification of reference road sections Data collection with standard methods
Trial 2 – M13**	2 – North and South	22 km	
Motorways and rings	7	179.6 km	
Copenhagen	More than 100	More then 140.0) km

- ARAN9000
- Friction
- Noise
- P79

12

Car sensors

Renault ZOE (in-vehicle):

- Yaw rate (°/s), speed (km/h), odometer (km), temperature (°C), tire pressure (mbar), energy consumption (kW), safety belt, wipers..
- Sampling rate 0.05-0.5 Hz AutoPi (external)
- 3D accelerometer
- Sampling rate 50 Hz

Mobile Phones (external)

- 3D accelerometer and gyroscope
- Sampling rate 150 Hz

GoPro (external)

- 3D accelerometer and gyroscope
- Sampling rate 200 Hz

Validation of car data

Standard devices

ARAN9000 – LCMS 2.0

- Structural distress: Potholes, Ravelling (disintegration), Cracks (length, width and depth), Bleeding
- Serviceability: Roughness (IRI), Mean Profile Depth (surface macro texture), Rutting, Bleeding
- 10 m sub-sections

P79

- 3D road profile (m) / sampling rate ~1000 Hz
- Rutting and Mean Profile Depth / 10 m subsections

СРХ

- Noise measurements (dB) / 10 m sub-sections
 FRIKV
- Friction measurements (slip in %) / 5 m subsections

Cracks and Raveling (M13)

Profile, IRI and MPD (M13)

Accelerations, IRI and MPD (M13)

Energy consumption (M13)

18

Data Pipeline Interface

Pre-Processing: Map Matching

- Map-matching is the process of aligning a sequence of observed user positions with the **road** network on a digital map.
- Hidden Markov Model Map matching
 (Paul Newson and John Krumm, 2009)

- from Open Source Routing Machine(OSRM)
- It matches/snaps given GPS points to the road network

Physical modelling_{1/2}

The idea of implementing physical modelling in the project is twofold:

- a) Road event classification based on physical models
- b) Road event classification based on hybrid machine learning models

Related research questions to b):

- To what level of detail can we classify and describe single road events
- Can single events be recognized when combining these events?
- What is the influence of noise in data (realistic scenario)?
- Can a physical models help improve efficiency or accuracy?

Physical modelling_{2/2}

Fa Ir

- A quarter-car model is selected.
- The model includes the major dynamic effects.
- Input to this system is the road profile z_0 and • vehicle velocity V.

 m_s

Machine learning

Success criteria

- 1. **Operative road assessment system** based on the sensors in a homogenous car fleet;
- 2. LiRA map Demo (like VEJMAN but LIVE);
- 3. Reliable algorithms and models used to calculate road measures from car sensors data. 6 road measures of the 10 listed above should have an accuracy higher than 80%;
- 4. Hardware Configuration and **Set-up implementable on other cars** supported by validated calibration procedure;
- 5. Guidelines to develop a Live Road Assessment system.
- 6. Publications on national and international journals.

Friction
 Cracking density
 Potholes
 Noise
 Noise
 IRI
 Energy
 Expenditure
 Patched area
 Unevenness
 Rutting depth
 Texture depth