

Shahrzad M. Pour

Postdoctoral Researcher at DTU Compute

email: shmp@dtu.dk

Overview

Overview

DIFFERENT SOURCES OF DATA

SINGLE LOCATION

ARAN devices

Data Pipeline

Data warehouse

Outline

Introduction

IoT & ROAD Transportation &

The data infrastructure Requirements in LiRA

LiRA Data Pipeline

- Components
- Proposed pipeline Architecture
- A bit of Implementation

LiRA Data Warehouse

- Designing the Data warehouse
- IoT Design methodology
- A bit of Implementation & size of data

Pros & Cons

Introduction to IoT - Internet of Things

A Network of Physical objects – "Things"

- IoT is an Eco-System
 - A network of Things
 - Technologies
 - Goal

Machine learning

Rouse, Margaret (2019). "internet of things (IoT)". IOT Agenda. Retrieved 14 August 2019

Internet of Things In ROAD Transportation

THINGS:

The driver/user

The SCOPE of LiRA

Outline

Introduction

IoT & ROAD Transportation &

The data infrastructure Requirements in LiRA

LiRA Data Pipeline

- Components
- Proposed pipeline Architecture
- A bit of Implementation

LiRA Data Warehouse

- Designing the Data warehouse
- IoT Design methodology
- A bit of Implementation & size of data

Pros & Cons

The Architectural data infrastructure Requirement

Data Collection requirement

Different Data Collection time

Support Multiple data types

(Unstructured/Semi -Structured)

The rate of volume, velocity, and the variety of data source

Data Stream/pipeline requirement

Communication Component

Ingestion Component

Processing Component

Data warehouse requirement

Deep insight & ML requires more data

Unified data structure

Pre-processing data

Data pipeline Components

- Communication Component:
 - Response-Request Communication model

- Ingestion Component:
 - Hybridization of Event-Driven Architecture & Micro-service Architecture

Event-Driven Architecture

Event Consumers Event Producers Event Ingestion Event Consumers Event Consumers

Micro-Service Architecture

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices

Data pipeline Components

Data Processing Component:

Data filtering/Cleaning

- Remove extrapolated measurements
- Sorting Measurements based on Timestamp

Data Interpolation

- Linear
- Quadratic
- Cubic

Map-matching

- Hidden Markov Model ((Paul Newson and John Krumm, 2009)
- Map Matching Service from OSRM library
 - » from Open Source Routing Machine(OSRM)
 - » It matches/snaps given GPS points to the road network

DTU

10

An example of ingesting one data source

Data Pipeline Architecture

DTU

A bit of Implementation

Outline

Introduction

IoT & ROAD Transportation &

The data infrastructure Requirements in LiRA

LiRA Data Pipeline

- Components
- Proposed pipeline Architecture
- A bit of Implementation

LiRA Data Warehouse

- Designing the Data warehouse
- IoT Design methodology
- A bit of Implementation & size of data

Pros & Cons

Designing the Data warehouse

Data format & Behavior

Auto Pi Device

Behavior

Distinct trip

IoT Design methodology 1

Device:

Physical entity:

Virtual Entity:

AutoPi

- Device/vehicle
 - Device Id

- SourceType
 - SourceType Id

Date

- Trip
- Start and end position
- Start and end time
- Device Id
- List of events
- Tag (Personal/Business)

Measurement types

Vehicle

- track position (GPS)
- accelerometer
- device events
- obd
- rpi
- Measurement
 - Object Id
 - Timestamp
 - Type
 - Attributes (flat/structured)

MapReference

Trip

- Object Id
- Timestamp
- Type
- Attributes
 (flat/structured)

1. Internet of Things: A Hands-On Approach (Introduced by Bahga & Madisetti, 2015)

DTU

A bit of Implementation & size of data

- PostgreSQL Database Management System(Open-Source & relational database)
- Creating database using Code-First Approach and by Entity Framework
- 600+ number of trips have been imported to the database
- Disk Space ~ 100 GB

Range of data of trips

AutoPi Type	Shortest Trip	Number of measurements	Longest Trips	Number of measurements	No of Measurement Types
Gen 2	6 min	4726	1 h & 2 min	108,852	66
Gen 3	2 min	5898	4 h & 15 min	15,682,197	66

Pros & Cons

Data Pipeline

- Pros
 - Unified & Generic architecture
 - Scalabe in multiple Trips level
 - Messaging mechanism
 - Micro-service architecture

- Cons
 - Not scalable within one single Trip

Data warehouse • Pros

- Generic structure
- So far supports two different sources of data
- Easy to use structurally (feedback from ML team)

- Cons
 - No interface is provided to ML & CIVIL yet
 - No proper parameter tuning has been done yet (size of batches)

DTU

19